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Path-Planning Strategies for a Point Mobile Automaton 
Moving Amidst Unknown Obstacles of Arbitrary Shape I 

Vladimir J. Lumelsky 2 and Alexander A. Stepanov 3 

Abstract. The problem of path planning for an automaton moving in a two-dimensional scene filled 
with unknown obstacles is considered. The automaton is presented as a point; obstacles can be of 
an arbitrary shape, with continuous boundaries and of finite size; no restriction on the size of  the 
scene is imposed. The information available to the automaton is limited to its own current coordinates 
and those of  the target position. Also, when the automaton hits an obstacle, this fact is detected by 
the automaton 's  "'tactile sensor." This information is shown to be sufficient for reaching the target 
or concluding in finite time that the target cannot be reached. A worst-case lower bound  on the length 
of paths generated by any algorithm operating within the framework of the accepted model is 
developed; the bound is expressed in terms of the perimeters of  the obstacles met by the automaton 
in the scene. Algorithms that guarantee reaching the target (if the target is reachable), and tests for 
target reachability are presented. The efficiency of  the algorithms is studied, and worst-case upper  
bounds  on the length of generated paths are produced. 

Key Words. Robotics, Robot motion planning, Collision avoidance algorithms, Planning with 
uncertainty, Provable algorithms. 

1. Introduction. To plan a path for a mobile automaton (a mobile robot) means 
finding a continuous trajectory leading from the initial position of the automaton 
to its target position. In this paper, we consider a case where the automaton is 
a point, and the environment (the scene) in which the automaton travels is defined 
in a two-dimensional plane. The scene can be filled with unknown obstacles of  
an arbitrary shape and size. The information about the obstacles comes from a 
simple sensor whose capability is limited to detecting an obstacle only when the 
automaton hits it. The main question being asked is whether, under such a model, 
a provable path-planning algorithm can be designed. 

The current research on robot path planning can be classified into two large 
categories depending on which of the two following basic models is being used. 
In the first model, called path planning with complete information (another popular  
term is the piano movers problem), perfect information about the obstacles is 
assumed. In the second model, called path planning with incomplete information, 
an element of uncertainty about the environment is present. Another important 
distinction can be made between the provable (other terms--exact ,  algorithmic) 
and heuristic approaches. In these terms, this paper  addresses the problem of 
designing provable path-planning algorithms in the framework of the model with 
incomplete information. 
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A brief review of the state of affairs in both categories of  works is in order 
here; the review is by no means inclusive. The first model - - the  piano movers 
problem-- i s  formulated as follows. 4 Given a solid object, in two- or three- 
dimensional space (2D or 3D), of  known size and shape, its initial and target 
position and orientation, and a set of obstacles whose shapes, positions, and 
orientations in space are fully described, the task is to find a continuous path 
for the object from the initial position to the target position while avoiding 
collisions with obstacles along the way. It is assumed that the surfaces of  the 
moving object and of the obstacles are algebraic; in most works, a stricter 
requirement of  planar surfaces is imposed. 

Because full information is assumed, the whole operation of path planning is 
a one-time, off-line operation. The main difficulty is not in proving that an 
algorithm that would guarantee a solution exists, but in obtaining a computa- 
tionally efficient scheme. By a solution, we mean either reaching the target or 
concluding in finite time that the target cannot be reached. Conceptually, cases 
of  arbitrary complexity can be considered, given the fact that a solution is always 
feasible. Another apparent  advantage of dealing with complete information is 
that any optimization criteria (finding the shortest path, or the minimum-time 
path, or the safest path, etc.) can be easily introduced. 

The computational complexity of  the problem was first realized when Reif [6] 
showed that the general piano movers problem is PSPACE-hard; he also sketched 
a possible solution for moving a solid object in polynomial time, by direct 
computation of the "forbidden" volumes in spaces of higher dimensions. 5 
Schwartz and Sharir [1] presented a polynomial-t ime algorithm for a two- 
dimensional piano movers problem with convex polygon obstacles. In a number  
of  works (e.g., Lozano-Perez [2]), the solid object is viewed as shrinking to a 
point while the obstacles are viewed as expanding accordingly, to compensate 
for the shrinking object. The resulting configuration space has higher dimensional- 
ity compared with the original workspace--one extra dimension per each degree 
of rotational freedom. In general, the obstacles in the configuration space have 
nonplanar  walls--even if the original obstacles are polyhedral. In order to keep 
the problem manageable,  various constraints are typically imposed. 

Moravec [3] considers a path-planning algorithm in two dimensions with the 
object presented as a circle. Brooks [4], in his treatment of a two-dimensional 
path-planning problem with a convex polygon object and convex polygon obsta- 
cles, uses a generalized cylinders presentation [5] to reduce the problem to a 
graph search. A generalized cylinder is formed by a volume swept by a cross- 
section (in general, of varying shape and size) moving along the cylinder axis 
(in general, a spine curve). 

A version of the piano movers problem where the moving object is allowed to 
consist of  a number of  free-hinged links is more difficult. On a heuristic level, 
this version was started by Pieper [7] and then investigated by Paul [8] because 

4A good survey of the work on provable algorithms for the problem can be found in [17]. 
5 Higher dimensions d appear when one takes into account the orientation of the moving object 
along its way; d = 3 for the two-dimensional case, and d = 6 for the three-dimensional case. 
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of its obvious relation to path generation and coordinate transformation problems 
of multiple-degrees-of-freedom robot arms. Recently, new approaches for this 
version were considered in [9] and [10]. The most general algorithm (although 
very expensive computationally) for moving a free-hinged body was given by 
Schwartz and Sharir [9]; the technique is based on the general method of cell 
decomposition; the moving object and the obstacles are assumed to be limited 
by algebraic surfaces. 

From the application standpoint, unless there is a reason to believe that the 
obstacles in the scene are polyhedral or, if the algorithm in question allows it, 
at least algebraic, the algorithms above cannot be applied directly. Then, an 
appropriate approximation has to be performed, which can introduce problems 
of its own. For example, given a prescribed accuracy of the approximation, the 
operation of apl~roximating nonlinear surfaces with linear constraints itself 
requires exponential time [21]. Also, the space of possible approximations with 
constraints of a given order is not continuous in the approximation accuracy: in 
other words, a slight change in the specified accuracy of the approximation can 
cause a dramatic change in the approximated surfaces and eventually in the 
generated paths. On the other hand, the approximation itself depends on consider- 
ations that are secondary to the path-planning problem: these are, for example, 
the accuracy of the presentation of actual obstacles by polygons, o r - -a  conflicting 
cri terion--computational costs of  processing the resulting connectivity graph. 

The attractiveness of the model of path planning with incomplete information 
for robotics lies in the possibility of naturally introducing a powerful notion of 
feedback control, and thus transforming the operation of path planning into a 
continuous on-line process. In turn, using sensory feedback in the control scheme 
allows one to ease the requirements on the shape and location of the obstacles 
in the scene, and even lift the requirement that the obstacles be stationary. An 
important component of the model is the fact that the information about the 
environment has a local character--this is because at any given moment the robot 
sensors can provide information only about its immediate surroundings. This 
component changes the problem rather significantly. To start with, it is not clear 
whether an algorithm exists which would guarantee reaching a global goal (here, 
the robot target position) based on local meal, s (the sensor information). 

The question of reaching a global goal with local means presents a fundamental 
problem, various formulations of which have been studied in a number of areas: 
game theory (differential games and macroeconomics, e.g., [18]; collective 
behavior, e.g., [19]), computer science (maze search [ 14]), and studies in geometry 
[16]. The difficult question of relationship between uncertainty and the algorithm 
complexity has been studied in [20]. 

In the context of robot path planning, works related to the model with incom- 
plete information have come primarily from studies on autonomous vehicle 
navigation; so far, they have been limited to various heuristics. In [11]-[13] a 
two-dimensional navigation problem is considered. Typically, obstacles are 
approximated by polygons; produced paths lie along the edges of  the connectivity 
graph formed by the straight line segments connecting the obstacle vertices, the 
start point, and the target point, with a constraint on nonintersection of the graph 
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edges with the obstacles. Path planning is limited to the automaton's immediate 
surroundings for which information on the scene is available--for example, from 
a vision module. Within this limited area, the problem is actually treated as one 
with complete information. 

One problem of working with incomplete information is that, because of the 
dynamic character of the incoming (sensor) information, the path cannot be 
preplanned, and so its global optimality is ruled out. Instead, one can judge the 
algorithm performance based on how it compares with other existing or theoreti- 
cally feasible algorithms, or how optimal they are locally, or how "reasonable" 
they look from the human traveler standpoint. 

Another inherent difficulty in designing algorithms for the model with incom- 
plete information is that the problem dimensionality cannot be made arbitrarily 
high. Because the information about the obstacles is unknown, a natural way to 
limit the number of options available to the automaton at each step is to impose 
a constraint on the problem dimensionality. Otherwise, when an object meets an 
obstacle in the three-dimensional space, it has an infinite number of possibilities 
for passing around the obstacle. Hence the significance of the requirement 
introduced in this paper that the environment be limited to the two-dimensional 
plane (actually, our algorithms can be used on any surface homeomorphic to a 
plane). With this constraint, every time the automaton encounters an obstacle it 
can turn only left or right along the obstacle boundary. Essentially, the algorithms 
described below are exploiting the Jordan Curve Theorem, which states that any 
closed curve homeomorphic to a circle drawn around and in the vicinity of a 
given point on an orientable surface divides the surface into two separate domains, 
for which the curve is their common boundary [22]. Similar ideas can be used 
for designing algorithms for robot arm manipulators [23], [24]. 

In terms of the available information, the model considered in this paper can 
be viewed as being diametrically opposite to the piano movers model: instead 
of the full information about the obstacles assumed in the latter model, no 
information about the obstacles is given to the automaton in our model. The only 
available input information includes the automaton's own coordinates and those 
of the target. The automaton's capability for learning about an obstacle is limited 
to the "ultra-local" information provided by the automaton's "tactile sensor." 
In other words, the automaton learns about the presence of an obstacle only 
when it hits it. 

Under the proposed algorithms, the automaton is continuously analyzing the 
incoming information about its current surroundings and is continuously planning 
its path. This is somewhat similar to the approach utilized in [16] for treating 
geometric phenomena based on local information. No approximation of the 
obstacles is done, and, consequently, no connectivity graphs or other intermediate 
computational structures are used. Since no reduction to a discrete space takes 
place, all points of the scene are available for the purpose of path planning. 
Because the model is continuous, the criteria typically used for evaluating 
algorithm performance--such as computational complexity as a function of the 
number of  vertices of the obstacles, or the time or memory required--are not 
applicable. Instead, a new performance criterion based on the length of the 
generated paths as a function of the obstacle perimeters is introduced. 
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One point should be mentioned. The main goal of this work is to investigate 
how productive the model with incomplete information is for designing provable 
robot path-planning algorithms. Specifically, given the local nature of the incom- 
ing sensor information about the environment, is a global solution feasible? 
Furthermore, what are the minimum resources--the minimum knowledge and 
the minimum memory-- that  the automaton's model must assume in order to 
guarantee a solution? As a result of such narrow problem formulation, a number 
of important issues are left out. No learning of any kind is considered. Although 
the results we obtain are applicable to various types of sensor feedback, the 
presentation is limited to tactile sensing. The automaton's size and shape, which 
have to be taken into consideration in applications, are simply ignored in this 
work; a point automaton is considered. 

In Section 2 the model of the environment and of the automaton is formulated. 
Assuming this model, a worst-case lower bound is produced in Section 3 for the 
general path-planning problem. In Sections 4 and 5 two basic algorithms for path 
planning are described and their convergence properties are analyzed. Each 
algorithm has quite different characteristics, and, depending on the scene, one 
can produce a shorter path than the other. For these algorithms, the worst-case 
upper bounds on the length of the generated paths are established, and tests for 
target reachability are formulated. This is followed, in Section 6, by an improved 
version of the path-planning algorithm which, while guaranteeing termination, 
Combines good features of both basic algorithms without sacrificing much of 
their clarity. Finally, in Section 7, all three algorithms are compared, and an 
additional insight into the algorithms' mechanisms is provided by showing their 
relevance to the maze search problem. 

2. Model. The model includes two par ts--one related to the geometry of the 
scene, and the other related to the characteristics and capabilities of the point 
mobile automaton (MA). 

ENVIRONMENT. The scene is a plane with a set of obstacles and the points Start 
(S) and Target (T) in it. Each obstacle is a simple closed curve of finite length 
such that a straight line will cross it only in finitely many points; a case when 
the straight line coincides with a finite segment of the obstacle boundary is not 
a "crossing." (An equivalent term used in the text for a simple closed curve is 
the obstacle boundary.) Obstacles do not touch each other; that is, a point on an 
obstacle belongs to one, and only one, obstacle. A scene can contain only a 
locally finite number of obstacles; this means that any disc of finite radius 
intersects a finite set of obstacles. Note that the model does not require that the 
set of obstacles is finite. 

AUTOMATON. MA is a point; this means that an opening of any size between 
two distinct obstacles is considered to be passable. The only information MA is 
provided with by its sensors is (1) its current coordinates, and (2) the fact of 
contacting an obstacle. MA is also given the coordinates of the Target. Thus, it 
can always calculate its direction toward and its distance from the Target. The 
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memory available for storing data or intermediate results is limited to a few 
computer words. The motion capabilities of  MA include three possible actions: 
move toward the Target on a straight line; move along the obstacle boundary; stop. 

DEFINITION 1. A local direction is a once and for all decided direction for 
passing around an obstacle. For the two-dimensional problem, it can be either 
left or right. 

Because of the uncertainty involved, every time MA meets an obstacle, there 
is no information or criteria which could help it decide whether it should go 
around the obstacle from the left or from the right. For the sake of clarity, and 
without losing generality, assume that the local direction of MA is always left 
(as in Figure 4). Unless stated otherwise, MA will be assumed to follow the local 
direction while walking around obstacles. 

DEFINITION 2. MA is said to define a hit point H on the obstacle, when, while 
moving along a straight line toward the Target, MA contacts the obstacle at the 
point /4 .  It defines a leave point L on the obstacle, when it leaves the obstacle at 
the point L in order to continue its straight line walk toward the Target. (See, 
for example, Figure 4.) 

I f  MA moves along a straight line toward the Target and the line touches some 
obstacle tangentially then there is no need to invoke the procedure for walking 
around the obs tac le - -MA just continues its straight line walk toward the Target. 
In other words, no H or L points will be defined in this case. Because of that, 
no point of  an obstacle can be defined as both an H and an L point. In order 
to define an H or an L point, the corresponding straight line has to produce a 
"real"  crossing of the obstacle; that is, in the vicinity of the crossing, a finite 
segment of  the line should lie inside the obstacle, and a finite segment of  it should 
lie outside the obstacle. 

Throughout,  the following notation is used: 

D is the (Euclidean) distance from the Start to the Target; 
d(A, B) is the distance between points A and B of the scene; thus, d(Start, 

Target) = D;  
d(A) is used as a shorthand notation for d(A, Target); 
d(Ai) signifies the fact that the point A is located on the boundary of the ith 

obstacle met by MA on its way to the Target; 
P is the total length of the path generated by MA on its way from the Start 

to the Target; 
pi is the perimeter of  the ith obstacle met by MA. 

The performance of the path-planning algorithms will be evaluated based on 
the quantity ~ p ; ,  the sum of perimeters of  obstacles met by MA on its way to 
the Target, or of  obstacles contained in a specific area of the scene. This quantity 
will allow us to compare various path-planning procedures in terms of the length 
of the paths they produce. 
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3. The Lower Bound for the Path-Planning Problem. This lower bound, formu- 
lated in Theorem 1 below, determines what performance can be expected in the 
worst case from any path-planning algorithm operating within the framework of 
our model. The bound is formulated in terms of the length of the path generated 
by the automaton on its way from the point Start (S) to the point Target (T). 
The bound is a powerful means for measuring performance of various path- 
planning procedures. 

THEOREM 1. For any path-planning algorithm satisfying the assumptions of our 
model, any (however large) P> 0, any (however small) D > 0 ,  and any (however 
small) 6 > 0, there exists a scene for which the algorithm will generate a path of 
length P, and 

(1) P>- D +  ~ pi-~,  
i 

where D is the distance between the points Start and Target, and Pi are perimeters 
of the obstacles intersecting the disc of radius D centered at the Target. 

PROOF. We want to prove that for any given algorithm a scene can be designed 
for which the length of the path generated by this unknown algorithm--say, 
Algorithm X--will  satisfy (1). Algorithm X can be of any type: it can be 
deterministic or random; its intermediate steps may or may not depend on 
intermediate results; etc. The only information known about Algorithm X is that 
it operates within the framework of our model of the automaton MA and the 
environment (Section 2). The proof  consists of designing a special scene (a set 
of obstacles) and then proving that the scene will force Algorithm X to generate 
a path not shorter than P in (1). 

The following scheme, consisting of two stages, is suggested for designing the 
required scene (called the resultant scene). At the first stage, a virtual obstacle is 
introduced; this is an obstacle parts or all of which, but not more, will eventually 
produce, once the second stage is completed, the actual obstacle(s) of the resultant 
scene. 

Consider a virtual obstacle shown in Figure l(a). It presents a corridor, of 
finite width 2 W >  6, and of finite length L. One end of the corridor is closed. 
The corridor is positioned such that the point S is located at the middle point 
of the closed end; the corridor opens in the direction opposite to the line (S, T). 
The thickness of the corridor walls is negligible compared with & Still in the first 
stage, MA is let walk from S to T along the path prescribed by Algorithm X. 
On its way, MA may or may not touch the virtual obstacle. 

When the path is complete, the second stage starts. A segment of the virtual 
obstacle is said to be actualized if all points of the inside wali of  the segment 
have been touched by MA. If MA touched the inside wall of the virtual obstacle 
at some length l, then the actualized segment is exactly of length l. If  MA was 
continuously touching the virtual obstacle at a point and then bouncing back; 
the corresponding actualized area is considered to be a segment of length 
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Fig. 1. Illustration for Theorem 1. Actualized segments of the maximum obstacle are shown as solid 
(S, Start point, T, Target point). 

around the point of  contact. I f  two segments of  MA's path along the virtual 
obstacle are separated by an area of  the virtual obstacle which MA did not touch, 
then MA is said to have actualized two separate segments of the virtual obstacle. 

We produce the resultant scene by designating as actual obstacles only those 
areas of  the virtual obstacle which have been actualized. Thus, if an actualized 
segment is of  length l, then the perimeter of  the corresponding actual obstacle 
is equal to 2/; this takes into account the inside and the outside walls of  the 
segment, and also the fact that the thickness of  the wall is negligible. 

This method for producing the resultant scene can be justified by the fact that, 
under the accepted model, the behavior of  MA is affected only by those obstacles 
which it touches along its way. Indeed, the produced path could have appeared, 
under Algorithm X, in two different scenes: in the scene with the virtual obstacle, 
and in the resultant scene. One can argue, therefore, that the areas of  the virtual 
obstacle, which MA did not touch along its way, might never have existed, and 
Algorithm X produced its path not in the scene with the virtual obstacle but in 
the resultant scene. This means that the performance of MA in the resultant scene 
can be judged against (1). This completes the design of the scene. Note that 
depending on MA's behavior under Algorithm X, zero, one, or more actual 
obstacles can be created in the scene of Figure 1. 

Next, we have to prove that MA's path in the resultant scene satisfies (1). Since 
MA starts at a distance D = d(S, T) from T, it obviously cannot avoid the term 
D in (1). We concentrate, then, on the second term in (1). One can see by now 
that the main idea behind the described process of  designing the resultant scene 
is to force MA to generate, for each actual obstacle, a segment of  the path at 
least as long as the total length of the boundary of that obstacle. Note that this 
characteristic of  the path is independent of  Algorithm X. 
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MA's path in the scene can be divided into two parts, P1 and P2; P1 
corresponds to MA's traveling inside the corridor, and P2 corresponds to its 
traveling outside the corridor; the same notation is used to indicate the length 
of the corresponding part. Both parts can become intermixed since, after having 
left the corridor, MA can temporarily return into it. Since part P2 starts at the 
exit point of the corridor then 

(2) P2 ---> L + C, 

where C =~/D2+ W 2 is the hypotenuse A T  of  the triangle ATS  (Figure l(a)).  
As for part P1 of the path inside the corridor, it can be, depending on Algorithm 
X, any curve. Observe that in order to defeat the bound (1), Algorithm X has to 
decrease the "path  per obstacle" ratio as much as possible. What is important 
for the proof  is that, from the "path per obstacle" standpoint, every segment of 
P1 that does not result in the creation of the equivalent segment of an actualized 
obstacle makes the path worse. All possible alternatives for P1 can be clustered 
to three groups. These groups are discussed separately below. 

1. Part P1 of the path never touches the walls of  the virtual obstacle (Figure 
l(a)).  As a result, no actual obstacles will be created, Yjp~=0;  but, as one 
can see, the resulting path is P > D. Therefore, for this kind of Algorithm X 
the theorem holds. Moreover, at the final evaluation, where only actual 
obstacles count, this MA strategy will not be judged as being very efficient: 
it creates an additional path component  at least equal to (2. L +  ( C -  D ) ) - - i n  
a scene with no obstacles! 

2. MA touches one or both inside walls of  the virtual obstacle more than once 
(Figure l(b)).  In other words, between the consecutive touchings MA is 
temporarily "out  of  touch" with the virtual obstacle. As a result, part P1 of 
the path will produce a number  of  disconnected actual obstacles; the smallest 
of  these, of  length 8, correspond to point touchings. Observe that, in terms of 
the "path  per obstacle" assessment, this kind of strategy is not very wise either. 
First, for each actual obstacle, a segment of  the path at least as long as the 
obstacle per imeter  is created; besides, additional segments of P1, due to 
traveling between the actual obstacles, are produced. Each of these additional 
segments is at least not smaller than 2W, if the two consecutive touchings 
correspond to the opposite walls of  the virtual obstacle, or at least not smaller 
than the distance between two sequentially visited disconnected actual obsta- 
cles on the same wall. Thus, the length P of the path exceeds the right side 
in (1), and the theorem holds. 

3. MA touches the inside walls of the virtual obstacle at most once. This case 
includes various possibilities, from a point touching, which creates a single 
actual obstacle of  length fi, to the case when MA closely follows the inside 
wall of  the virttial obstacle. As one can see in Figure l(c), this case contains 
the most interesting paths. The shortest possible path would be created if MA 
went directly from S to the furthest point of  the virtual obstacle and then 
directly to T (path Pa, Figure l(c)). (Given the fact that MA knows nothing 
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about the obstacles, this kind of a path can be produced only by accident.) 
The total perimeter of the obstacle(s) here is 23, and the theorem clearly holds. 

Finally, the most efficient path, from the "path per obstacle" standpoint, is 
produced if MA closely follows the inside wall of the virtual obstacle, and then 
goes directly to the point T (path Pb, Figure l(c)). Here MA is doing its best in 
trying to compensate each segment of the path with an equivalent segment of 
the actual obstacle. In this case, the generated path P is equal to 

(3) P=S~.p~+,/D2+ W 2-  W 
i 

(in our case, there is only one term in Y~iPi)" Since no constraints have been 
imposed on the choice of the lengths D and W, take them such that 

(4) 3>- D+ W-~ /D2+ W 2 

which is always possible because the right-hand side in (4) is nonnegative for 
any D and W. Reverse the sign (and the inequality) in (4), and add (D+~ip i )  
to both its sides; this produces 

(5) • Pi § ~/~-F~- W 2 - W_> D + E  p i -  & 
i i 

Comparing (3) with (5), observe that (1) is satisfied. This exhausts all possible 
cases of path generation by Algorithm X. [] 

We conclude this section with two remarks. First, by appropriately selecting 
multiple virtual obstacles, Theorem 1 can be extended to an arbitrary number of 
obstacles. Second, for the lower bound to hold, the constraints on the information 
available to MA can be relaxed significantly. Namely, the only required constraint 
is that MA does not have complete information about the scene at any time. 

In the following sections, three path-planning algorithms are introduced, their 
performances analyzed, and the upper bounds on the length of their generated 
paths derived. 

4. First Basic Algorithm: Bugl  

4.1. Procedure. The procedure Bug1 is to be executed at any point of a con- 
tinuous path. Figure 2 demonstrates the behaviour of MA. The goal is to generate 
a path from the Start to the Target. When meeting an ith obstacle, MA defines 
a hit point Hi, i = 1, 2, . . . .  When leaving the ith obstacle, to continue its travel 
toward the Target, MA defines a leave point Li; initially, i=  1; L0 = Start. The 
procedure uses three registers, R~, R2, R3, to store intermediate information; all 
three are reset to zero when a new hit point, Hi, is defined. Specifically, R~ is 
used to store the coordinates of the current point, Q,,, of t ~ m i n i m u m  distance 
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Fig. 2. Automaton's path (dotted lines), Algorithm Bug1 (obl, ob2, obstacles; HI, H2, hit points; 
L1, L2, leave points). 

between the obstacle boundary and the Target (this takes one comparison at each 
path point); R2 integrates the length of the obstacle boundary starting at Hi ; and 
R3 integrates the length of the obstacle boundary starting at Qm. (In case of many 
choices for Qm, any one of them can be taken.) The test for target reachabitity 
mentioned in step 3 of the procedure is explained in Section 4.3. The procedure 
consists of the following steps: 

1. From the point Li_l, m o v e  toward the Target along a straight line until one 
of the following occurs: 
(a) The Target is reached. The procedure stops. 
(b) An obstacle is encountered and a hit point, Hi, is defined. Go to step 2. 

2. Using the local direction, follow the obstacle boundary. If the Target is reached, 
stop. After ~a_ving traversed the wh~e_b.onndaz.y and having returned to Hi, 
define a new leave point L~ = Qm. Go to step 3. 

3. Apply the test for target reachability. If the Target is not reachable, the 
procedure stops. Otherwise, using the content of the registers R2 and R3, 
determine the shorter way along the boundary to L~, and use it to get to Li; 
set i = i + l  and go to step 1. 

4.2. Characteristics of  Bug1. In this section the characteristics and performance 
of the algorithm are analyzed. 

LEMMA 1. When, under Bugl ,  MA leaves a leave point of  an obstacle in order to 
continue its way toward the Target, it never returns to this obstacle again. 
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PROOF. Assume that on its way from the Start to the Target MA does meet 
some obstacles. We number those obstacles in the order in which MA meets 
them. Then, the following sequence of distances appears: 

D, d(H1), d(L1), d(H2), d(L2), d(H3), d ( L 3 ) , . . . .  

If  the point Start happened to be on the boundary of an obstacle and the line 
(Start, Target) crosses that obstacle then D = d(HO. 

It has been mentioned in Section 2 that if MA's path touches an obstacle 
tangentially then there is no need to invoke the procedure for walking around 
an obstacle--MA just continues its straight line walk toward the Target. In all 
other cases of meeting the ith obstacle, unless the Target lies on the boundary 
of the obstacle, a relation holds: d(Hg)> d(Li). This is because, on the one hand, 
according to the model, any straight line (except a line that touches the obstacle 
tangentially) crosses the obstacle at least in two distinct points (finite "thickness" 
of obstacles), and, on the other hand, according to Algorithm Bugl, the point L~ 
is the closest point from the obstacle to the Target. Starting from Li, MA walks 
straight to the Target until it meets the (i + 1)th obstacle. Since, according to the 
model, obstacles do not touch one another, then d(L i )>  d(H~+l). Therefore, our 
sequence of distances satisfies the relation, 

(6) d(H~) > d(L , )  > d(H2) > d(L2) > d(Hs) > d(L3) >" �9 ", 

where d(HO is or is not equal to D. Since d(Li) is the shortest distance from 
the ith obstacle to the Target, and since (6) guarantees that Algorithm Bugl 
monotonically decreases the distances d(Hi) and d(L~) to the Target, Lemma 1 
follows. [] 

The lemma thus guarantees that the strategy will never create cycles. 

COROLLARY. Under Bug1, independent of  the geometry of an obstacle, MA defines 
not more than one bit and not more than one leave point on it. 

To produce an upper bound on the length of the paths generated by Bugl, an 
assurance is needed that on its way to the Target MA always encounters only a 
finite number of obstacles. This is not obvious since, while following Algorithm 
Bug1, MA can " look" at the Target not only from different distances but also 
from different directions; that is, besides moving toward the Target, it may also 
rotate around the Target (see Figure 3). Hence the following lemma. 

LEMMA 2. Under Bug1, on its way to the Target MA can meet only a finite 
number of  obstacles. 

PROOF. Although, while walking around an obstacle, MA can, at some moments, 
be at distances much larger than D from the Target (see Figure 3), the straight 
line segments of its path toward the Target are always within the same circle of 
radius D centered at the Target; this is guaranteed by inequality (6). Since, 
according to our model, any disc of finite radius can intersect with only a finite 
number of obstacles, the lemma follows, [] 
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S 

Fig. 3. Algorithm Bugl. Arrow lines indicate straight line segments of the automaton's path. Segments 
around obstacles are not shown; these are similar to the ones shown in Figure 2. 

COROLLARY. The only obstacles that can be met by MA (under Algorithm Bugl) 
are those which intersect the disc of radius D centered at the Target. 

Together, Lemma 1, Lemma 2, and the corollary guarantee convergence of 
Algorithm Bug1. 

At this point we can establish the performance of the procedure Bugl, in terms 
of the length of the paths it generates. The following theorem gives an upper 
bound on the path lengths produced by Bugl. 

THEOREM 2. The length of the path produced by the procedure Bugl will never 
exceed the limit 

(7) P = D + 1.5 �9 ~ pg, 
i 

where ~i Pi refer to the perimeters of the obstacles intersecting the disc of radius D 
centered at the Target. 

PROOF. Any path can be looked at as consisting of two parts: straight line 
segments of the path between the obstacles, and the path segments related to 
walking around the obstacles. Due to inequality (6), the sum of the straight line 
segments will never exceed D. As to the path segments around the obstacles, 
Algorithm Bugl requires that, in order to define a leave point on the ith obstacle, 
MA has to make a full circle around it; this produces a path segment equal to 
one perimeter, p~, of the ith obstacle. By the time MA is prepared to walk from 
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the hit to the leave point, in order to depart for the Target, it knows the direction 
(go left or go right) of the shorter path to the leave point. Thus, its path segment 
between the hit and the leave points along the boundary of the ith obstacle will 
not exceed 0.5 �9 pi. Summing up the partial estimates for the straight line segments 
of the path and for the segments around the obstacles met by MA on its way to 
the Target, we obtain (7). [] 

Analysis of the procedure Bugl shows that the requirement that MA has to 
know its own coordinates at any instance can be eased. It suffices if MA is capable 
of positioning itself at the circle of a given radius centered at the Target. In other 
words, what is important for Bugl is not the actual position of MA but its 
direction toward and its distance from the Target. Assume that instead of the 
coordinates of the current point Qm of the minimum distance between the obstacle 
and the Target, we store in the register R1 the minimum distance itself. Then, in 
step 3 of Bugl, MA can reach the point Qm by comparing its current distance 
from the Target with the content of the register R~. If more than one point of 
the current obstacle lie at the minimum distance from the Target, any one of 
them can be used as the leave point, without affecting the convergence of the 
procedure. 

4.3. Test for Target Reachability. Every time MA completes the exploration of 
a new obstacle i, it defines on it a point Li. Then, MA leaves the ith obstacle 
(according to Lemma 1, it will never return to it) and starts moving from Li, to 
the Target along the straight line segment (L~, Target). Since the point Li is by 
definition the closest point of the ith obstacle to the Target, then normally there 
should be no points of the ith obstacle between Li and the Target. Because of 
the model assumption that the obstacles do not touch each other, the point L~ 
cannot belong to any other obstacle but i. Therefore, if MA, after having arrived 
at L~ in step 3 of the algorithm, discovers that the straight line (L~, Target) crosses 
some obstacle at point L~, this can only mean that the crossed obstacle is i and 
that the Target is not reachable--either the Start or the Target point is trapped 
inside the ith obstacle. 

To show that this is true, let O be a simple closed curve, X be a point in the 
scene not belonging to O, L the point on O closest to X, and (L, X) the straight 
line segment connecting L and X; all of  these are defined in the plane. The 
segment (L, X) is said to be directed outward if a finite part of it in the vicinity 
of the point L is located outside of the curve O; otherwise, if (L, X) penetrates 
inside the curve O in the vicinity of L, it is said to be directed inward. 

The following statement holds: if the segment (L, X) is directed inward then 
X is inside O. The condition is necessary because if X were outside the curve 
O then some other point of O would appear in the intersection of (L, X)  and 
O which would be closer to X than L; by definition of the point L, this is 
impossible. The condition is also sufficient because if (L, X) is directed inward 
and L is the point of the curve O closest to X then (L, X)  cannot cross any 
other point of O and, therefore, X must lie inside O. This fact is used in the 
following test. 
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TEST FOR TARGET REACHABILITY. If, while using Algorithm Bugl, after having 
defined a point L on an obstacle, MA discovers that the straight line segment 
(L, Target) crosses the obstacle at the point L, then the Target is not reachable. 

5. Second Basic Algorithm: Bug2 

5.1. Procedure. The procedure Bug2 is executed at any point of a continuous 
path. Again, the goal is to generate a path from the Start to the Target. As will 
be seen, in its travel under Bug2, on the one hand, MA can meet the same obstacle 
i more than once, but, on the other hand, the algorithm has no way of distinguish- 
ing between different obstacles. Because of that, the subscript i will be used only 
when referring to more than one obstacle; in addition, the superscript j will be 
used to indicate the j th  occurrence of the hit or leave points on the same or on 
a different obstacle. Initially, j = 1; L ~  Start. The test for target reachability built 
into steps 2(b) and 2(c) of the procedure is explained in Section 5.3. One can 
follow the procedure using the example shown in Figure 4. The algorithm consists 
of the following steps: 

1. From the point L j-~, move along the straight line (Start, Target) until one of 
the following occurs: 
(a) The Target is reached. The procedure stops. 
(b) An obstacle is encountered and a hit point, H j, is defined. Go to step 2. 

2. Using the accepted local direction, follow the obstacle boundary until one of 
the following occurs: 
(a) The Target is reached. The procedure stops. 

/ 
/ 

Fig. 4. Automaton's path (dotted line) under Algorithm Bug2. 
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(b) The line (Start, Target) is met at a point Q such that the distance d ( Q )  < 
d (HJ ) ,  and the line (Q, Target) does not cross the current obstacle at the 
point Q. Define the leave point L j = Q. Set j = j +  1. Go to step 1. 

(c) The automaton returns to H j and thus completes a closed curve (the 
obstacle boundary) without having defined the next hit point, H j+~. The 
target is trapped and cannot be reached. The procedure stops. 

Unlike Algorithm Bug1, more than one hit and more than one leave point can 
be generated on a single obstacle (see, for example, Figure 5). Also, note that 
the relationship between the perimeters of the obstacles and the length of the 
paths generated by Bug2 is not as clear as in the case of Bugl. In Bugl the 
perimeter of an obstacle met by MA is covered at least once, and never more 
than 1.5 times. In Bug2, however, more options appear. A path segment around 
an obstacle generated by MA is sometimes shorter than the obstacle perimeter 
(compare Figures 2 and 4). In some other cases, when a straight line segment of 

*T *T 

_ A ,3  , 3  

(a) (b) 

Fig. 5. Automaton 's  path around a maze-like obstacle (in-position case) under  Algorithm Bug2. In 
terms of path complexity, both obstacles (a) and (b) are the same, whereas for (a) the straight line 
(S, T) crosses the obstacle 10 times, n i = 10, and for (b), n i = 16. At most, the path passes one segment 
(here (H1,  L1)) three times; that is, there are at most  two local cycles. 
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Fig. 6. A case when, under Algorithm Bug2, the automaton will have to make almost a full circle 
around a convex obstacle. 

the path meets the obstacle almost tangentially and MA goes around the obstacle 
in a "wrong" direction, the path can actually be equal to the obstacle's full 
perimeter (Figure 6). And finally, as Figures 5 and 7 demonstrate, the situation 
can get even worse, and MA may have to pass along some segments of  a maze-like 
obstacle more than once (see more on this case in the next section). 

S 

Fig. 7. Automaton's path in case of  an in-position scene; here S is outside the obstacle, and T is inside. 
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5.2. Characteristics of Bug2 

LEMMA 3. Under Bug2, on its way to the Target MA can meet only a finite 
number of  obstacles. 

PROOF. Although, while walking around an obstacle, MA can, at some moments,  
be at distances much larger than D from the Target, its straight line segments 
toward the Target are always within the same circle of  radius D centered at the 
Target. This is guaranteed by the algorithm condition that d(U,  Target) > d ( H  j, 
Target) (see step 2 of Algorithm Bug2). Since, according to our model, any disc 
of  finite radius can intersect with only a finite number of obstacles, the lemma 
follows. [] 

COROLLARY. The only obstacles that can be met by MA under Algorithm Bug1 
are those which intersect the disc of  radius D centered at the Target. Moreover, the 
only obstacles that can be met by MA are those that intersect the straight line (Start, 
Target). 

DEFINITION 3. For a given local direction, a local cycle is created when MA 
has to pass some point of  its path more than once. 

In the example in Figure 4, no cycles are created; in Figures 5 and 7, there 
are some local cycles. 

DEFINITION 4. A term in-position refers to such a mutual position of the pair 
of  points (Start, Target) and a given obstacle where (1) the straight line segment 
(Start, Target) crosses the obstacle boundary at least once, and (2) either the 
Start or the Target lie inside the convex hull of  the obstacle. A term out-position 
refers to such a mutual position of the pair (Start, Target) and the obstacle in 
which both points Start and Target lie outside the convex hull of  the obstacle. 
A given scene is referred to as an in-position case if at least one obstacle in the 
scene, together with the Start and the Target points, creates an in-position 
condition; otherwise, the scene present an out-position case. 

For example, the scene in Figure 3 presents an in-position case; without the 
obstacle ob3, it would have presented an out-position case. Below, n/ is the 
number of  intersections between the straight line (Start, Target) and the ith 
obstacle; thus, ni is a characteristic of the set (scene, Start, Target) and not of  a 
specific algorithm. Obviously, for any convex obstacle ni = 2. 

I f  an obstacle is not convex but still ng = 2, the path generated by Bug2 can be 
as simple as that for a convex obstacle (Figure 4, obstacle ob2). It can become 
more complicated if n~ > 2. In Figure 5(a) and (b), the segment of  the boundary 
from H1 to L1, (H1,  L1), will be passed three times; segments (L1, L2) and 
(H2,  H1) ,  twice each; and segments (L2, L3) and (H3,  H2) ,  once each. 

LEMMA 4. Under Bug2, MA will pass any point of  the ith obstacle boundary at 
most ni/2 times. 
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PROOF. As one can see, the procedure Bug2 does not distinguish whether two 
consecutive obstacle crossings by the straight line (Start, Target) correspond to 
the same or to different obstacles. Without loss of generality, assume that only 
one obstacle is present; then, the index i can be dropped. For each hit point, 
H j, the procedure will make MA walk around the obstacle until it reaches the 
corresponding leave point, U;  therefore, all H and L points appear in pairs, 
(H  j, U).  Because, under the accepted model, obstacles are of finite "thickness," 
for each pair (H  j, L:) an inequality holds: d(H j) > d(U). After leaving U, MA 
walks along a straight line to the next hit point, H j+l. Since, according to the 
model, the distance between two crossings of the obstacle by a straight line is 
finite then d (L:) > d ( H j+ 1 ). This produces an inequality for all the H and L points, 

(8) d(H ' )>  d(L' )> d(H 2)> d(L 2) > d ( H  3)> d (L  3 ) > . . , .  

Therefore, although any H or L point may be passed more than once, it will be 
defined as an H (correspondingly, L) point only once; thus, it can generate only 
one new passing of the same segment of the obstacle perimeter. In other words, 
each pair (H  j, U)  can give rise to only one passing of a segment of  the obstacle 
boundary. [] 

The lemma guarantees that the procedure terminates, and gives a limit on the 
number of generated local cycles. Using the lemma, an upper bound on the length 
of the paths generated by Bug2 can be produced. 

THEOREM 3. The length of a path generated by the procedure Bug2 never exceeds 
the limit 

(9) P = D + V  ni__Pi 
7 �9 2 

where Pi refer to the perimeters of the obstacles intersecting the straight line segment 
(Start, Target). 

PROOF. Any path can be looked at as consisting of  two parts: straight line 
segments of the line (Start, Target) (between the obstacles intersecting the line) 
and the path segments related to walking around the obstacle boundaries. Because 
of inequality (8), the sum of the straight line segments will never exceed D. As 
to the path segments around the obstacles, there is an upper bound guaranteed 
by Lemma 4 for each obstacle met by MA: that is, not more than hi~2 passings 
along the same segment of the obstacle boundary will take place. Because of 
Lemma 3 (see the proof  of the lemma), only those obstacles that intersect the 
straight line (Start, Target) should be counted. Summing up the straight 
line segments and those corresponding to walking around the obstacles, we 
obtain (9). [] 
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Theorem 3 suggests that in some special scenes, while under the procedure 
Bug2, MA may have to go around the obstacles any (large albeit finite) number 
of times. An important question, then, is how typical such scenes are, and, in 
particular, what characteristics of the scene influence the length of the path. 
Theorem 4 and its corollary below address this question. They suggest that the 
mutual position of the Start point, the Target point, and the obstacles can affect 
the path length rather dramatically. Together, they significantly improve the upper 
bound on the length of the paths generated by Bug2--in out-position scenes in 
general and in scenes with convex obstacles in particular. 

THEOREM 4. Under the procedure Bug2, in the case of  an out-position scene MA 
will pass any point of  the obstacle boundary at most once. 

In other words, if the mutual position of the obstacle and of the points Start 
and Target satisfies the out-position requirements, the estimate on the length of 
the path for the procedure Bug2 reaches its lower bound (1). 

PROOF. Figure 8 illustrates the proof. Shaded areas in the figure correspond to 
one or many obstacles. The boundaries of these areas of the obstacles can be of 
any shape which is indicated by dotted lines. 

Consider an obstacle met by MA on its way to the Target, and consider an 
arbitrary point Q on the obstacle boundary; assume that Q is not a hit point. 
Because the obstacle boundary is a simple closed curve, the only way that MA 
can reach point Q is to come to Q from a previously defined hit point. Move 
from Q along the already generated part of the path in the direction opposite to 

I 
i T 
I 

I 

i 

Fig. 8. Illustration for Theorem 4. 



Path-Planning Strategies for a Point Mobile Automaton 423 

the accepted local direction, until the closest hit point along the path is encoun- 
t e r e d - s a y ,  this is H j. We are interested only in those cases where Q is involved 
in at least one local cycle, that is, when MA passes the point Q more than once. 
For this event to occur, MA has to pass H j at least as many times. In other 
words, if MA does not pass H j more than once, it cannot pass Q more than once. 

According to the procedure Bug2, the first time MA reaches the point H j is 
along the straight line (Start, Target), or, more precisely, along the straight line 
segment (L j-~, Target). Then, M A turns left and starts walking around the obstacle. 
To form a local cycle on this path segment, M A  has to return to the point H j 
again. Since a point can be defined as a hit point only once (see the proof  for 
Lemma 4), the next time MA returns to the point H j it must approach it from 
the right (see Figure 8), along the obstacle boundary. Therefore, after having 
defined H j, in order to reach it again, this time from the right, MA somehow 
must cross the straight line (Start, Target) and enter its right semiplane. This can 
take place in one of only two ways--outside or inside the interval (Start, Target). 
Consider both cases. 

1. The crossing occurs outside the interval (Start, Target). This case can corre- 
spond only to an in-position configuration (see Definition 4). Theorem 4, 
therefore, does not apply. 

2. The crossing occurs inside the interval (Start, Target). We now want to prove 
that such a crossing of the path with the interval (Start, Target) cannot produce 
local cycles. Notice that the crossing cannot occur anywhere within the interval 
(Start, H j) because otherwise at least a part of the straight line segment (U -l,  
H j) would be included inside the obstacle. This is impossible because MA is 
known to have walked along the whole segment (U  ~, H 0 .  If the crossing 
occurs within the interval (H  j, Target) then at the crossing point MA would 
define the corresponding leave point, U, and start moving along the line (Start, 
Target) toward the Target until it defined the next hit point, H j+~, or reached 
the Target. Therefore, between H j and U, MA could not have reached into 
the right semiplane of the line (Start, Target) (see Figure 8). 

Since the above argument holds for any Q and the corresponding H j, we 
conclude that in an out-position case MA will never cross the interval (Start, 
Target) into the right semiplane, which prevents it from producing local 
cycles. [] 

So far, no constraints on the shape of the obstacles have been imposed. In a 
special case when all the obstacles in the scene are convex, no in-position 
configurations can appear, and the upper bound on the length of the path can 
be improved as follows. 

COROLLARY. If all the obstacles in the scene are convex then, in the worst case, 
the length o f  the path produced by the procedure Bug2 is 

(10) P = D +Y~ Pi 
i 
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and, on the average, 

(11) P = D + 0 . 5  �9 ~ p i ,  
i 

where Pi refers to the perimeters of the obstacles intersecting the straight line segment 
(Start, Target). 

Consider a statistically representative number  of scenes with a random distribu- 
tion of convex obstacles over each scene, a random distribution of points Start 
and Target over the set of  scenes, and a fixed local direction as defined above. 
Then, the straight line (Start, Target) will cross all the obstacles it meets in such 
a way that for some obstacles MA will have to walk around them so as to cover 
the bigger part of  their perimeters (as in case of the obstacle ob 1, Figure 4), and, 
for some other obstacles, MA will cover only a smaller part of  their perimeters 
(as in case of the obstacle ob2, Figure 4). On the average, one would expect a 
path that satisfies (11). As for (10), Figure 6 presents an example of  such a "bad"  
scene. The corollary thus assures that for a wide range of scenes the length 
of paths generated by Algorithm Bug2 will not exceed the universal lower 
bound (1). 

5.3. Test for Target Reachability. As Lemma 4 suggests, under Bug2 MA may 
pass the same point H j of  a given obstacle more than once, thus producing a 
finite number  p of local cycles, p = 0, 1, 2 , . . . .  The proof  to the lemma indicates 
that, after having defined a point H j, MA will never define this point again as 
an H or an L point. Therefore, on each of the subsequent local cycles (if any), 
the point H j will be passed not along the straight line (Start, Target) but along 
the obstacle boundary. Every time after leaving the point H j MA can expect one 
of the following to occur: 

MA will never return again to Hi;  this happens, for example, if it leaves the 
current obstacle altogether, or reaches the Target, 

MA will define at least the first pair of  the points (U, H~+~),. . .  and then return 
to the point H j, to start a new local cycle, 

MA will come back to the point H j without having defined on the previous 
cycle a point U. In other words, MA could find no other intersection point Q 
of the line ( H  j, Target) with the current obstacle such that Q would be closer to 
the Target than H j, and the line (Q, Target) would not cross the current obstacle 
at Q. This can happen only if either MA or the Target are trapped inside the 
current obstacle (see Figure 9). The condition is both necessary and sufficient, 
which can be shown similarly to the proof  in the target reachability test for the 
procedure Bugl,  Section 4.3. 

Based on this observation, a test for Target reachability for the procedure Bugl 
can be formulated as follows. 

TEST FOR TARGET REACHAB1LITY. If, on the pth local cycle, p = 0, 1, . . . ,  after 
having defined a point H j, MA returns to this point before it defines at least the 
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Fig. 9. Examples of traps. The path (dotted line) is executed under Algorithm Bug2. After having 
defined the point H2, the automaton returns to it before it defines any new L point. Therefore, the 
Target is not reachable. 

first two out of  the possible set of  points U, H i + l , . . . ,  H k, it means that MA has 
been trapped and hence the Target is not reachable. 

6. Improving the Performance of the Basic Algorithms. Each of the algorithms 
Bug1 and Bug2 has a clear and simple underlying idea; each has its pluses and 
minuses. Namely, Bugl never creates any local cycles, but it tends to be "over- 
cautious" and never covers less than the full perimeter of  an obstacle. The 
procedure Bug2, on the other hand, is more "human"  in that it takes advantage 
of  the simple situations, but may become quite inefficient in more difficult cases. 
The better features of  both procedures are combined in the following procedure, 
called BugM1 (for "modified").  The procedure BugM1 combines the efficiency 
of the procedure Bug2 in simpler scenes (where MA will pass only portions, 
instead of the full perimeters, of  the obstacles, see Figure 4) with the more 
conservative strategy of the procedure Bugl (which limits the corresponding 
segment of  the path around an obstacle to 1.5 of its perimeter, see the bound 
(7)). In BugM1, for a given point on the path, the number of  local cycles containing 
this point is never larger than two; in other words, MA will never pass the same 
point of  the obstacle boundary more than three times. Although the flow of action 
in BugM1 is not as "clean" as in the basic algorithms, their termination properties 
are retained. 

T h e  procedure BugM1 is executed at any point of the continuous path. Instead 
of using the fixed straight line (Start, Target), as in Bug2, BugM1 uses a straight 
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line (L~, Target), with a changing point L~; here, L~ indicates the j th  leave point 
on an obstacle. The procedure uses three registers, R~, R2, R3, to store intermedi- 
ate information; all three are reset to zero when a new hit point, H~, is defined. 
Specifically, R~ is used to store the coordinates of the current point, Qm, of the 
minimum distance between the obstacle boundary and the Target; R2 integrates 
the length of the obstacle boundary starting at H~; and R 3 integrates the length 
of the obstacle boundary starting at Qm. (In case of many choices for Qm, any 
one of them can be taken.) The test for target reachability mentioned in step 2(d) 
is explained in Section 5.3. Initially, i = 1,j = 1; L ~ = Start. The procedure consists 
of the following steps: 

1. From the point L~ -~, move along the line (LJi -~, Target) toward the Target 
until one of the following occurs: 
(a) The Target is reached. The 'procedure stops. 
(b) An obstacle is encountered and a hit point, H J, is defined. Go to step 2. 

2. Using the accepted local direction, follow the obstacle boundary until one of 
the following occurs: 
(a) The Target is reached. The procedure stops. 
(b) The line (L~ -l, Target) is met inside the interval (L~ -1, Target), at a point 

Q such that the distance d(Q)  < d(H~), and the line (Q, Target) does not 
cross the current obstacle at the point Q. Define the leave point L~ = Q. 
Set j = j + l .  Go to step 1. 

(c) The line (L~ -1, Target) is met outside the interval,(L~ -~, Target). Go to 
step 3. 

(d) The automaton returns to H~ and thus completes a closed curve (the 
obstacle boundary) without having defined the next hit point. The Target 
cannot be reached. The procedure stops. 

3. Continue following the obstacle boundary. If the Target is reached, stop. 
Otherwise, after having traversed the whole boundary and having returned to 
H~, define a new leave point L~ = Qm. Go to step 4. 

4. Using the content of R2 and R3, determine the shorter way along the obstacle 
boundary to L~, and use it to get to L~. Apply the test for target reachability 
(as in Section 4.3). If the Target is not reachable, the procedure stops. 
Otherwise, designate L ~ = L J, set i = i+  1, j = 1, and go to step 1. 

Why does the procedure BugM1 converge? Depending on the scene, the flow 
of the algorithm fits one of the following two cases: 

1. For a given scene, if the condition in step 2(c) of the procedure is never 
satisfied then the actual flow of the algorithm is that of Bug2, for which con- 
vergence has already been shown. In this case, the straight lines (L~, Target) 
always coincide with the straight line (Start, Target), and no local cycles appear. 

2. If, on the other hand, the scene presents an in-position case then the condition 
in step 2(c) is satisfied at least once; that is, MA crosses the straight line (L~ -~, 
Target) outside the interval (L~ -l, Target). This indicates that there is a danger 
of multiple local cycles. At this point, MA switches to a more conservative 
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approach offered by Algorithm Bugl, instead of risking an uncertain number 
of local cycles it might now expect from the procedure Bug2 (see Lemma 4). 
MA does this by executing steps 3 and 4 of BugM1 which are identical to 
steps 2 and 3 of the procedure Bugl. 

After one execution of steps 3 and 4, the last leave point on the obstacle is 
defined, L], which is guaranteed to be closer to the Target than the corresponding 
hit point H{ (see inequality (7), Lemma 1). Then, MA leaves the ith obstacle 
and never returns to it again (Lemma ]). From now on, the algorithm (specifically, 
its steps 1 and 2) will be using the straight line (L ~ Target) as the "leading 
thread." (Note that, in general, the line (L ~ Target) does not coincide with the 
straight lines (L~ Target) or (Start, Target).) One execution of the sequence of 
steps 3 and 4 of BugM1 is equivalent to one execution of steps 2 and 3 of Bugl, 
which guarantees the reduction by one of the number of obstacles that MA will 
meet on its way. Therefore, as in Bugl, the convergence of this case is guaranteed 
by Lemma 1, Lemma 2, and its corollary. Since cases 1 and 2 are independent 
and they exhaust all possible cases, the procedure BugM1 converges. 

7. Concluding Remarks. The two bounds given by (1) and (7) indicate a gap in 
the path length estimates for the general problem of path planning among 
unknown obstacles, between at least ~Pi given by the lower bound (1), and at 
most 1.5 �9 ~ pi assured by the upper bound (7) of Algorithm Bug1. This poses 
an interesting problem of narrowing the gap either by finding a higher lower 
bound, or by introducing a better path-planning algorithm and lowering the 
upper bound. 

The only work that these authors are aware of on convergence of motion- 
planning algorithms with uncertainty is the Pledge algorithm [16], which addresses 
a problem different from ours--namely,  how to escape from a maze (and not 
how to find a given point inside or outside the maze). Very little is known about 
the performance of such algorithms; there are no performance estimates for the 
Pledge algorithm. In this paper we limit the performance of such algorithms by 
the worst-case lower bound (1), the worst-case upper bounds (7), (9), and (10), 
and by the average estimate (11) above. 

On the theoretical level, therefore, the question "How reasonable can the paths 
generated by the algorithms for robot path planning among unknown obstacles 
be?" has a simple answer: Algorithm Bug1 is the best that can be offered today. 
Another advantage to Bug1 is that it does not require knowledge of the (obot's 
current coordinates; it is sufficient if the robot can measure its distance from and 
its direction toward the target. 

On a more practical level, Bugl is a rather "conservative" algorithm, whose 
thoroughness in investigating each obstacle may or may not fit our notion of 
"being reasonable." Algorithm Bug2, on the other hand, is more "aggressive" 
and more efficient in many cases. Its behavior seems more reasonable, more 
"human."  And, as happens sometimes with humans when they desperately try 
to reach their target and instead get lost in the woods, Bug2 pays a high price 
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on those rare occasions when the set (obstacles, Start, Target) presents an 
in-position arrangement (see Section 5.2). In this sense, Algorithm BugM1 pro- 
vides a compromise between the pluses and minuses of Algorithms Bugl and 
Bug2. 

One gets an additional insight into the operation and the "area of  expertise" 
of  the basic algorithms by trying them in maze search problems. The problem of 
search in an unknown or a known maze can be formulated in a number of  ways. 
In one version (see, e.g., [14]), the automaton, after starting at an arbitrary cell 
of  an unknown maze, must eventually visit every single cell of  the maze, without 
passing through any barriers. Any pair of  cells in the maze is assumed to be 
connected via other cells. Note that in this version there is no notion of a specific 
target cell, and no sense of direction is present. Because of that, neither of the 
basic algorithms can be used. 

Fig. 10. Example of a walk in a maze using Algorithm Bug2; S = Start, T = Target. Points in which 
the automaton's path (dotted line) crosses the imaginary straight line (S, T) are indicated by dots. 
Maze barriers are shown as heavy lines. 
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In another version of the maze search problem, given a starting cell, the 
automaton has to find an exit from an unknown maze; the coordinates of  the 
exit are not known. Although no target is explicitly presented here, either of our 
algorithms can be used. Namely,  the automaton can choose any point somewhere 
in infinity as its target position, and then use the basic algorithms as usual. Then, 
if the exit exists, it is guaranteed to be found. 

In still another version of  the maze search problem [15], the barriers of  the 
maze are formed by a set of  horizontal and vertical line segments; unlike the two 
previous versions, full information about the maze is assumed. Given the coordin- 
ates of  two points (cells) in a maze, the problem is to find a route from one to 
the other. Assuming that the barriers have nonzero thickness, our work shows 
that full information about the maze is redundant;  local information (from any 
mechanism simulating a "tactile sensor") is suff• to solve the problem. It is 
not clear whether this observation can have interesting consequences for applica- 
t i o n s - f o r  example, for the routing problem in VLSI design. 

Since the performance of Algorithm Bug2 can differ remarkably, depending 
on whether it deals with an in-position or an out-position case (see the estimates 
(9)-(11)), its behavior in a maze depends largely on the local topology of the 
barriers and, specifically, on whether the barriers in the maze form connected or 
disconnected patterns. This is demonstrated in an example shown in Figure 10. 
(To fit a typical convention of  the maze literature, we present a discrete version 
of the continuous path-planning problem: the maze is a rectangular cell structure, 
with each cell being a little square; any cell crossed by the straight line (S, T) 
is considered to be lying on the line.) At first, one might think that the automaton 
is dealing here with an in-position scene and, therefore, Algorithm Bug2 is likely 
to produce an inefficient path with local cycles. Observe that this is not the case: 
given the fact that the automaton knows nothing about the maze, it performs 
quite well. 
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